Tasks 6.1 and 6.2: Phase Distributions and Secondary Formation During Winter in the San Joaquin Valley

Presented by:
Fred Lurmann
Siana Alcorn
Manidipa Ghosh
Sonoma Technology, Inc.
Petaluma, CA

Presented to:
CRPAQS Data Analysis Workshop
Sacramento, CA
March 9-10, 2004

Phase Partitioning-Related Questions

- What is the distribution of PM and precursor species among the gas, liquid, and aerosol phases?
- How do the phase distributions and chemical and physical mechanisms vary in space and time?
- What chemical and physical mechanisms contribute to the observed phase distributions?

Average Phase Distribution of NO_x-Related Species CRPAQS Winter 2000/2001 IOP Days

HNO₃ data were not available at Bethel Island and Bakersfield

Average Phase Distribution of NO_x-Related Species by Period CRPAQS Winter 2000/2001 IOP Days

Periods: P1 = 0-5, P2 = 5-10, P3 = 10-13, P4 = 13-16, P5 = 16-24

Average Phase Distribution of NO_x-Related Species by Period CRPAQS Winter 2000/2001 IOP Days

Average Phase Distribution of NH₃-Related Species by Period CRPAQS Winter 2000/2001 IOP Days

Periods: P1 = 0-5, P2 = 5-10, P3 = 10-13, P4 = 13-16, P5 = 16-24

Average Phase Distribution of SO₂-Related Species by Period In Bakersfield - Winter 2000/2001 IOP Days

Periods: P1 = 0-5, P2 = 5-10, P3 = 10-13, P4 = 13-16, P5 = 16-24

Average Phase Distribution of Organics by Period CRPAQS Winter 2000/2001 IOP Days

Periods: P1 = 0-5, P2 = 5-10, P3 = 10-16, P4 = 16 -24

Average Phase Distribution of Organics by Period CRPAQS Winter 2000/2001 IOP Days

Periods: P1 = 0-5, P2 = 5-10, P3 = 10-16, P4 = 16 -24

Secondary Formation Questions

- Where and when do precursors (VOC, NO_x, NH₃, HNO₃, and SO₂) limit the formation of secondary sulfates and nitrates?
- How is NO_x oxidized to nitric acid?
- How much ozone and precursor species are above the valleywide layer and how much gets into the mixed layer?

Important Observations for Winter PM_{2.5} in SJV

- NH₄NO₃ is generally the most abundant chemical component in PM_{2.5} followed by carbonaceous material (OC+EC)
- NH₄NO₃ concentrations are limited by the rate of HNO₃ formation, rather than by the availability of NH₃
- HNO₃ is formed via daytime photochemistry and a nighttime chemistry aloft

Important Observations for Winter PM_{2.5} in SJV

- Primary NO_x and OC+EC emissions are important contributors
- Secondary Organic Aerosol (SOA) formation from VOC emissions is important in winter, but not as important as primary OC+EC emissions
- Daytime photochemistry is VOC-, sunlight-, and background-ozone-limited in winter. This is a nonlinear regime for the gas-phase chemistry

Diurnal Patterns of PM_{2.5} Components in Winter

Periods: P1 = 0-5 P2 = 5-10 P3 = 10-13 P4 = 13-16 P5 = 16 -24

Diurnal Patterns of PM_{2.5} Components in Winter

Fresno PM_{2.5} 1/4/01 – 1/7/01

Nitrate Formation Is Not Likely to be Limited by Ammonia Availability

•

Nitrate Formation Is Not Likely to be Limited by Ammonia Availability

Nighttime Nitrate Production Aloft Angiola Tower - 90m Data 12/27/00 – 12/29/00

•

Nighttime Nitrate Production Aloft <u>Angiola Tower - 90m Data</u> 1/30/01 – 2/4/01

OC/EC Ratios at Bakersfield on IOP Days

OC/EC ratios increase during the day

Periods: P1 = 0-5, P2 = 5-10, P3 = 10-13, P4 = 13-16, P5 = 16 -24

Comparison of OC and EC When OC/EC < 3.5 Fresno, Bakersfield, Bethel Island, Angiola

Purpose: Establish the OC/EC ratio of primary emissions

Estimated Average Primary and Secondary OC on IOP Days

Average Percent Secondary OC (of Total OC)

Location	Primary OC/EC = 2.74	Primary OC/EC = 3.00
Bethel Island	15%	11%
Bakersfield	22%	17%
Fresno	23%	18%
Angiola	25%	21%
Sierra Nevada	39%	34%

NMOC/(NO_y-NO₃) Ratios in Fresno Winter IOP Days

NO_x ~ NO_y-NO₃

Ratios
<8 indicates
VOC-NO_x
oxidation is
in the VOCand sunlightlimited
regime

Periods: P2 = 5-10

P3 = 10-16

P4 = 16-24

Conclusions

- Particulate NO₃ and OC concentrations are small relative to gaseous NO_v and NMOC precursor concentrations.
- Particulate NH₄NO₃ concentrations are limited by the rate of HNO₃ formation, rather than by the availability of NH₃.
- HNO₃ is formed via both daytime photochemistry and aloft nighttime chemistry.
- Primary NO_x and OC+EC emissions are important contributors; high nighttime OC+EC emissions are evident, especially in Fresno.
- Secondary organic aerosol formation from VOC emissions may account for 15% to 25% of the total OC.
- Relatively low NMOC/NO_x ratios indicate the daytime photochemistry is VOC-, sunlight-, and background-ozone-limited in winter. This is a nonlinear regime for the gas-phase chemistry.